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According  to the  dictionary,  a system  is something  like  “a  group  or  combination  of  interrelated,  interde-
pendent,  or  interacting  elements  forming  a  collective  entity”.  In  postharvest,  fresh  harvested  food  crops
can be considered  isolated  small  scale  systems.  Postharvest  research  aims  to  understand  the  quality  of
these ‘systems’  as  influenced  by  postharvest  conditions.  The  phenotypic  quality  of  horticultural  produce
is based  on  genetic  traits  that  are  expressed  through  a cascade  of  reactions  subject  to  complex  regulatory
odelling
etabolomics

roteomics
enomics
ranscriptomics

mechanisms  and  diverse  environmental  conditions.  Ultimately,  to  fully  understand  postharvest  phenom-
ena, a  systemic  approach  that links  genetic  and  environmental  responses  and  identifies  the underlying
biological  networks  is required.  Thanks  to the  development  of  high  throughput  omics  techniques  such
system-wide  approaches  have  become  a viable  option  to  support  traditional  postharvest  research.  This
review provides  an  overview  of systems  biology  and  how  it can  lead  postharvest  research  into  a  new  era.
. Biological systems

The early years of biology have been influenced by two  impor-
ant concepts. The concept of reductionism goes back to Descartes
1596–1650) and holds that a complex system is nothing but the
um of its parts, and, therefore, can be understood by the behaviour
f its constituents. The concept of mechanism additionally states
hat all natural phenomena can be explained and are determined
y fundamental laws of nature (Trewavas, 2006). Early last century

 more holistic approach was introduced stating that behaviour
f a given system cannot be explained by its constituents alone.
nstead, the system, as a whole, may  override and largely deter-

ine how the parts behave (Trewavas, 2006). This goes back to
ristotle (384–322 BC) who stated that the whole is more than the
um of its parts. In contrast to machines, biological systems are
nherently prone to, and capable of coping with, large sources of

iological variation, undermining the strict deterministic mecha-
istic approach. At the same time (1920–1940), an interdisciplinary
pproach was  developed for the biological sciences by Von Berta-
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lanffy and Weiss (Drack et al., 2007). Von Bertalanffy’s General
Systems Theory provided the base for the current field of systems
biology. The essential revolution came from the realisation that bio-
logical systems are hierarchically organised with influences going
both up and down through the hierarchy. Feedback control mech-
anisms typically contribute to maintenance of homoeostasis while
feed-forward mechanisms are typically involved in inducing robust
changes in systems behaviour (Kitano, 2001). The existence of such
complex control systems makes the whole more than the sum of
the parts and warrants the existence of the integrative approach
advocated by modern systems biology.

Systems biology is the field of research that aims to understand
complex biological systems at the systems level (Kitano, 2001). A
system can be seen as a set of interacting or interdependent entities,
forming an integrated whole serving a common objective. Biologi-
cal systems are real-life complex systems that serve common goals
of survival and ultimately reproduction (Koshland, 2002). Like any
other system, biological systems are characterised by (i) a given
structure, with (ii) a given behaviour and (iii) interconnectivity
(Dubrovsky, 2004).

The structure of a biological system is defined by its physical
parts (e.g., tissues, cells, organelles) and their composition (e.g.,

DNA, proteins, metabolites, lipids). Their behaviour involves inputs
(e.g., external stimuli such as light, temperature, atmospheric
composition, pH and nutrient levels and internal stimuli such as
proteins, metabolites, hormones and various other compounds

dx.doi.org/10.1016/j.postharvbio.2011.05.007
http://www.sciencedirect.com/science/journal/09255214
http://www.elsevier.com/locate/postharvbio
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hat might act as signal molecules), processing (e.g., via catabolic
nd anabolic pathways, or processes such as gene expression,
ifferentiation and cell division) and outputs of material (e.g., pro-
eins, metabolites), information (e.g., transcripts) or energy (e.g.,
eat, ATP, movement). Finally a biological system is characterised
y a high degree of interconnectivity between its various parts,
howing both functional relationships (e.g., through metabolic, sig-
alling and gene regulation pathways) and structural relationships
etween each other (e.g., through compartmentalisation, recep-
or molecules, membrane transporters, plasmodesmata, vascular
issue, and the cytoskeleton).

Robustness is an essential property of biological systems
Kitano, 2001). Several concepts contributing to robustness known
rom engineering systems can also be recognised in biological sys-
ems. Control schemes, such as feed-forward and feedback controls,
re primarily responsible for actively controlling the desired sta-
us of a system (Freeman, 2000). Redundancy is a second concept
Mantovani, 1999), where, for example, isogenes and gene repli-
ation allow systems to become more robust in response to gene
r allelic damage. Complementary metabolic pathways also con-
ribute to cell survival against environmental or genetic change (Lee
t al., 2005). Modular design is inherent to multi-cellular biological
ystems and eukaryotic cells where compartmentalization pre-
ominates. The modular design reflects the hierarchical structure
f biological systems and contributes to robustness by preventing

 local failure from spreading to the wider system. Finally, struc-
ural stability contributes to robustness where, the structure of the
ontrol system largely determines the system behaviour by being
ighly tolerant to fluctuations in the different control parameters
Freeman, 2000).

. An integrative approach

Systems biology relies on a multidisciplinary approach to inte-
rate data from various disciplines of biology (Friboulet and
homas, 2005) bringing together molecular disciplines (e.g., genet-
cs, biochemistry, molecular biology) with those involving more
omplex systems (e.g., cell biology, microbiology, plant or human
hysiology). The aim of systems biology is to link the quantitative
ata in a mathematically defined sense across the different scales
f biological organization (from DNA, RNA, protein to cell, tissue,
rgans). Mathematical modelling is used to drive integration with
n aim of reaching a unified understanding of biological systems
You, 2004). Next to applications in human physiology, systems
iology has already been embraced by various disciplines rang-

ng from ecology (Benfey, 2004), crop physiology (Yin and Struik,
008), to organismal biology (Schwenk et al., 2009), microbiology
Park et al., 2008) and molecular cell biology (Anonymous, 2006;

esterhoff and Palsson, 2004). The goal of systems biology there-
ore is to define the structure, dynamics and control of biological
ystems. The expected impact from systems biology focuses on an
mproved integrative understanding of biological systems (Kitano,
001), to subsequently allow for better control and prediction of
he behaviour of existing biological systems (e.g., improved human
isease treatments; (Westerhoff and Palsson, 2004)) and then to
ediate the design of new biological systems with desired proper-

ies (e.g., Dixon, 2005; Drubin et al., 2007; Sweetlove et al., 2003)

.1. Systems thinking

The current renewed interest in systems thinking has been

riven by the tremendous increase in data collected through the
arious high throughput ‘omics’-techniques (Kandpal et al., 2009;
uwabe and Yano, 2008) associated with the failure of classical
eductionistic approaches to interpret systems behaviour from its
y and Technology 62 (2011) 223–237

constituents (Kitano, 2001). While genomics and associated bioin-
formatics data handling in genome projects such as the human
programme and those of crops such as tomato, grape, rice, wheat,
maize, potato and apple have been responsible for generating
new insights into important constituents and structures of biolog-
ical systems, this is not sufficient to create understanding of the
functioning of the system impacted by changing conditions. The
various forms of communication that operate within the hierar-
chy of a system are essential to understanding the overall systems
behaviour (Trewavas, 2006). These relationships are not likely to
be obtained from straightforward profiling experiments in any
of the ‘omics’ areas but, instead, have to be deduced from care-
fully designed dynamic perturbation experiments in which the
response of the system to changing environmental conditions is
monitored.

2.2. Top-down versus bottom-up

Within systems biology two complementary approaches have
been used: top-down and bottom-up (Bruggeman et al., 2007;
Bruggeman and Westerhoff, 2007; Kitano, 2001). Top-down
approaches start from system-wide data collected through the
various high throughput ‘omics’-techniques to define the time
dependent composition of the physical parts of the system
structure and apply inductive data analysis techniques (e.g., bioin-
formatics, statistical models, neural networks, Bayesian models)
to identify global network structures based on phenomenological
correlation data. This can lead to the identification of new, but still
virtual, molecular mechanisms and the formulation of hypotheses
concerning their regulation and other interactions. The major chal-
lenge for the data analysis is to integrate ‘omics’ data coming from
different organisational levels to develop hypotheses on cellular
regulation in terms of signal transduction, feedback mechanisms,
etc., instead of only inferring networks at the level of genes (de la
Fuente et al., 2002). The top-down approach is thus a data-driven
and mainly a phenomenological based approach with emphasis
on high throughput data collection resulting in models which are
merely qualitative (Fig. 1).

Eventually, top-down approaches can feed into bottom-up
approaches once the responsible mechanisms have been prop-
erly identified. Bottom-up approaches rely on deductive modelling
techniques where the models are deduced from established views
and fundamental relationships rooted in theories of, for example,
chemistry and physics (‘first principles’). Small scale experiments
are conducted to calibrate and validate models on defined parts
of the larger system and subsequently to challenge hypotheses
derived from these models (Slepchenko et al., 2003). Ultimately,
pathway models of a detailed mechanistic level should be com-
bined with signalling and regulatory networks to come to a
mechanism based model at the systems level. The bottom-up
approach is thus a hypothesis-driven and mainly a mechanism
based approach with emphasis on computational modelling tech-
niques resulting in quantitative models (Fig. 1).

2.3. Systems biology work flow

Systems biology will never be a purely top-down or bottom-
up approach (Goodacre et al., 2004; Kitano, 2002) but the two will
be combined as indicated in Fig. 1. As in all sciences, fundamental
and applied research will be driven by a certain research question.
This research question will concern a certain (sub)system that has
to be defined to some level by setting its boundaries to discrim-

inate between what is and what is not part of the (sub)system
under study. If the research question is formulated with a concep-
tual model in mind, some hypothesis can be formulated and more
or fewer experiments can be designed to challenge the hypoth-
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ig. 1. Schematic outline of the systems biology work flow. The top-down approach
n  a hypothesis-driven approach. This schematic outline combines insights derived
nd  Wolkenhauer (2007).  For further explanation see text.

sis by deductive reasoning. If no conceptual model is available,
o clear hypothesis can be formulated and holistic experiments
eed to be designed to collect system-wide information to gen-
rate new hypotheses through inductive reasoning. By iteratively
oing through the cycle of designing new experiments to generate
nd challenge new hypotheses, the mathematical and conceptual
odels can be shaped, improved, and applied to create insight in

nd understanding of the structure, behaviour, and control of the
iological system under study.

Models can be developed at any scale and with any level of com-
lexity using a range of modelling techniques some of which will
e discussed separately below. However, what all models have in
ommon is that the model structure needs to be defined in terms
f the model boundary, dependent and independent variables and
odel parameters (model identification; Oreskes et al., 1994). Sub-

equently the unknown parameters need to be given numerical
alues (model calibration) based on literature or information rich
xperimental data. To test the applicability of a model a valida-
ion is required which is preferably independent. However, one
hould realise that even a perfect validation does not provide a

uarantee that the abstracted model is actually “true” under all
onditions (Oreskes et al., 1994). Therefore, the model itself should
ever become the aim, but should remain a tool to create added
alue by challenging existing concepts and theories. The insights
 on a holistic data-driven modelling approach while the bottom-up approach relies
 Goodacre et al. (2004), Ideker et al. (2001), Kim et al. (2008), Kitano (2001, 2002)

gained from large scale system models are not always obvious and
can be counter intuitive revealing “hidden features” when applied
to new unique conditions (Kolch, 2008).

Data integration and analysis is the central hub in the systems
biology work flow (Fig. 1) if only for its important role in data stan-
dardisation to allow for efficient handling and exchange (Suwabe
and Yano, 2008). Over the years, much effort has gone into bioin-
formatics, statistics and computational biology (De Moor et al.,
2003) to store, catalogue, condense, and mine the huge experi-
mental datasets generated. In addition, various techniques (e.g.,
sensitivity, stability, bifurcation and control analysis; Kitano, 2001)
are combined in evaluating data from simulation experiments to
study robustness of the biological system modelled (Wolkenhauer,
2007).

Experiments, in a systems biology context, are characterised by
high throughput ‘omics’ techniques, some of which are summarised
in the following sections. These techniques have been made pos-
sible through rapid technological advances in modern laboratory
instrumentation. While steady state experiments are of interest to
identify the structure of biological systems, emphasis has shifted

towards perturbation experiments to unravel the dynamic control
of systems (Ideker et al., 2001). These perturbations can include
gene alterations, changes in environmental conditions or hormonal
stimuli.
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. Technologies for postharvest systems approaches

The current explosion of data from high throughput and global
nalyses has opened up new possibilities in systems modelling.
s more comprehensive data are collected on gene transcription,

ranslation and consequent metabolism, it is obvious that devel-
ping novel ways of connecting pathways and data at the various
evels of organisation are critical in developing our understand-
ng of the physiological responses of a biological system. The
omplexities of the complete flow of information through tran-
cription, translation and into metabolic response are only just
eing appreciated. The following sections provide an overview of
ur understanding of these levels of organisation in a postharvest
ontext.

.1. Genomics and transcriptomics

Genomics is the acquisition and analysis of DNA sequence data.
hile initially genomics was used to describe large scale gene

equence, with recent advances in molecular techniques, genomics
as now come to describe a more global approach to under-
tanding DNA structure. Early genomic approaches were based on
STs (Expressed Sequence Tags) which are single reads from com-
lementary DNA (cDNA) derived from messenger RNA (mRNA)
xpressed at the time of sampling. These single reads can be aligned
ith each other through bioinformatics into recognisable gene

equences giving valuable gene information. These genomic stud-
es typically generated large numbers of ESTs, but now a wider
nd deeper analysis of gene families and expression has become
ossible, including increased facility to identify regulatory gene
etworks and the control of expression.

Transcriptomics arose from the combination of genomics data
nd miniaturisation, allowing the creation of microarrays and
ene chips containing 1000s of known gene sequences. The pres-
nce of mRNA corresponding to each of these sequences could be
easured from different tissues or different sampling events, gen-

rating knowledge of where and when a gene is expressed, and
iving a snapshot of the transcriptome in one experiment. The lim-
tations of this technology were the need for gene sequence to
reate the microarrays. Once created, only expression information
f the genes selected could be measured. Hybridisation technol-
gy is now being overtaken by a naïve sequencing technology that
vercomes the prior need for gene models. The development of
yrosequencing and imaging technologies, have allowed sequenc-

ng to be performed and measured at microscopic levels. Plates or
rrays containing millions of reactions can be assayed at a single
ime. Platforms such as Roche FLX, Illumina Hi-Seq and SOLiD Tech-
ologies are now available, and this technology has been utilised for
ranscriptomics by frequency counts of transcripts within pools of
DNA. This has huge advantages, as every gene that is expressed
an be interrogated, the splice variation in a population can be
easured, and dynamic range is not affected by saturation of a

uorescent probe at the high end and background fluorescence at
he low end. As sequencing technology is rapidly getting cheaper
t is becoming the transcriptomic technology of choice among
esearchers.

.1.1. State of the art
The success of genomic approaches depends on sequence

atabases and attendant bioinformatics systems. To date, EST
atabases for fruit such as grape (Moser et al., 2005), pineap-
le (Moyle et al., 2005), citrus (Forment et al., 2005; Maul et al.,

008), apple (Newcomb et al., 2006; Park et al., 2006) and kiwifruit
Crowhurst et al., 2008), have been made publicly available and var-
ous levels of analysis published. Most of these large databases have
een developed from a range of plant tissues, including vegetative
y and Technology 62 (2011) 223–237

and reproductive organs, and are not specifically targeted at fruit
ripening. However, those such as apple (Newcomb et al., 2006) and
kiwifruit (Crowhurst et al., 2008) have included ESTs from libraries
of ripening fruit both on the tree and postharvest. With kiwifruit
for example, this has enabled mapping of cell wall genes over var-
ious stages of fruit softening over 10 days postharvest ripening
(Crowhurst et al., 2008). ESTs generated from different species or
cultivars are also a significant source of material, such as single
nucleotide polymorphisms (SNPs), for constructing genetic maps,
resulting in markers for traits important for postharvest quality.
Integration of ESTs, genetic maps, and whole genome sequence
information with breeding programmes is proving to be of major
benefit in developing new cultivars with improved postharvest
quality and response characteristics (Chagne et al., 2007, 2008).

More recently, whole genome sequences for fruit species have
started to become available, such as those published on apple
(Velasco et al., 2010), grape (Jaillon et al., 2007), papaya (in this
case a virus-resistant transgenic variety; Ming et al., 2008), and
strawberry (Shulaev et al., 2011) while those of tomato and peach
are likely to appear soon. These have the advantage of providing
sequence data independent of expression at the time of sampling,
and allowing a more complete analysis of gene families and path-
ways.

Microarrays heralded a new era allowing the measurement
of gene expression of multiple genes simultaneously. These data,
however, have limitations as they require validation through alter-
nate expression technologies (e.g. quantitative PCR) and they
depend on the accuracy of gene annotation in public databases.
The availability of whole genome sequences has allowed for the
development of microarrays that cover the complete transcrip-
tome and even representation of the continuous DNA strand by
tiling arrays providing the means for a deeper analysis of the tran-
scriptome, including cytosine methylamine and identification of
polymorphisms (Gregory et al., 2008). The ability to sequence mil-
lions of transcripts at a time, is currently allowing researchers to
move further away from mainstream species and interrogate less
well studied organisms to answer specific questions (Alagna et al.,
2009). We  expect this to be the case with fruit and vegetable crops
of significant postharvest interest.

High throughput qPCR has also made small scale transcrip-
tomics of single gene families accessible, such as studying the
dynamics and patterns of lipoxygenase (LOX) gene expression
(Zhang et al., 2006) or ethylene signalling gene expression (Tacken
et al., 2010; Yin et al., 2010, 2009, 2008) during ripening. This
approach has proven particularly valuable in identifying and char-
acterising low-expressed regulators e.g. transcription factors that
might not have been detected using hybridisation technologies,
such as the identification of the molecular control of red colour
development by the MYB10 transcription factor in ripening man-
gosteen fruit (Palapol et al., 2009).

3.1.2. Current use in postharvest
The ultimate goal of a genomics approach to postharvest biol-

ogy is to understand the molecular control of postharvest responses
include general processes such as ripening and senescence. Under-
standing the molecular regulation of these processes could lead
to better technologies for controlling the physiological processes
associated with ripening and, potentially, storage disorders.

It is only relatively recently that specific postharvest exper-
iments have been carried out using genomic approaches. This
is likely to increase with the increasing availability of sequence
databases and more sophisticated expression technology such as

tiling arrays. Arrays have been used to studies on ripening changes
in peach, apple and nectarine (Janssen et al., 2008; Schaffer et al.,
2007; Trainotti et al., 2006; Ziliotto et al., 2008), postharvest water
loss in grapes (Rizzini et al., 2009) and on carbondioxide response of
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trawberries (Ponce-Valadez et al., 2009) and grapes (Becatti et al.,
010). In addition, cold responsive genes have been identified in
each (Tittarelli et al., 2009).

Transcriptome array analyses show that mutation influences
xpression of more than 30% of genes differentially expressed dur-
ng tomato fruit development and ripening (Alba et al., 2005).
he complexity of the ethylene signalling pathway from receptors
hrough to transcription factor families is being well-characterised
n tomatoes and the availability of the whole genome sequence for
omato will likely produce more family candidates. For example,

ore than 100 ERF-like genes have been identified in Arabidopsis
nd rice (Nakano et al., 2006). Co-ordinated expression studies of
ene families within such pathways are now starting to appear, as
or ripening kiwifruit, with 5 receptors, 2 CTR-like genes, 4 EIL-like
enes and 14 ERF transcription factors analysed in single experi-
ents (Yin et al., 2010, 2009, 2008).
The availability of arrays has allowed a more global approach

o texture. For example, the use of a peach fruit array has shown
ubstantial numbers of differentially expressed genes associated
ith different levels of ripening and softening of nectarine fruit

reated with 1-MCP (Ziliotto et al., 2008). Softening in strawberry
ruit has been well-dissected through the use of antisense tech-
ology (e.g., Quesada et al., 2009; Santiago-Domenech et al., 2008)
nd the availability of whole genome sequence for this species will
nable a wider perspective on softening control.

Other major traits or responses associated with postharvest
esponses are more difficult to analyse through single gene
pproaches. Flavour development and low temperature response
re multigenic, and thus lend themselves well to approaches which
nvolve global expression analysis based on EST or whole genome
equences. For example, the involvement of LOX genes in aroma
evelopment in tomato fruit has been painstakingly analysed using
ntisense in tomatoes to determine which LOX gene had a measure
f control over flavour (Chen et al., 2004a). Use of an EST database
nd in vitro expression allowed 6 LOX members to be much more
uickly analysed in ripening kiwifruit, showing differential expres-
ion and association with hexanal and hexenal production (Zhang
t al., 2006, 2009). An apple array together with an ACO antisense
ransgenic apple line has been used to show the regulatory role of
thylene in the biosynthesis pathways of aroma volatiles (Schaffer
t al., 2007). In low temperature response, typically some hundreds
f genes can be shown to respond to chilling conditions; in grape-
ruit low temperature treatments elicited gene response to both
olerance- and injury-inducing conditions (Maul et al., 2008).

.1.3. Limitations and opportunities
While microarray studies focus on relative amounts of mRNAs

n the cell, these are not necessarily proportional to the expres-
ion level of the proteins they code for. This is largely regulated
y translation-initiation features of the mRNA sequence. Microar-
ay analyses of postharvest responses, while providing interesting
omparative information on gene types, still require more detailed
xpression and functionality studies before co-ordinated gene
unction can be confirmed. A major limitation of these microarrays
re that the genes that are represented on the arrays are often not
hosen from EST libraries derived from postharvest treated fruit.
his again can be addressed by accessing whole genome sequences
r a second generation sequencing approach not relying on pre-
xisting knowledge of genes to be tested.

The use of expression data in isolation for systems modelling
ill be problematic. PCR- or deep sequencing-based expression
ata of members of specific gene families, while providing com-

arative data for individual family members, highlight the gaps in
nderstanding information flow. For instance, for kiwifruit ethy-

ene signal transduction (Yin et al., 2010, 2009, 2008), 5 receptor, 2
TR, 4 EIL and 14 ERF genes were isolated and their expression
 and Technology 62 (2011) 223–237 227

under normal ripening in air, stimulation by external ethylene,
treatment with 1-MCP and treatment with low temperature eval-
uated. Within each of those sets of genes, different expression
patterns were found under the various conditions, overall provid-
ing several hundred different pieces of specific expression data.
Although the information flow from receptor to CTR to EIL and ERF
has a linear component, the expression data do not specifically pro-
vide a sequential flow of information, but rather a snapshot of gene
levels at each sample time. By knowing what the relative expression
levels are are at, say, 48 h after harvest under ethylene treatment at
20 ◦C for all 24 genes, the data provide a comparative picture. How-
ever, the dynamics are missing. This is even more obvious when
considering that the link between RNA level and associated protein
is almost completely unknown. What little data there are available
suggest that no assumptions can be made. For instance, transcripts
of some ethylene receptors in ripening tomato fruit have been
shown to increase concomitant with a decrease in receptor pro-
tein level (Kevany et al., 2007) and similar differences between RNA
and protein levels for receptors in response to ethylene have been
shown in apple fruit (Tatsuki et al., 2009). Understanding and quan-
tification of gene expression is further confounded by epigenetic
mechanisms, where developmental and environmental impacts on
DNA can lead to greater levels of variability in expression (Seymour
et al., 2008).

One of the greatest limitations in the postharvest arena is that
much of the work is done on woody fruit crops such as apple, grape,
citrus etc. Transgenic approaches to elucidate gene function can
take a considerable time, persuading researchers to use model het-
erologous systems such as Arabidopsis or tomato, and transient
expression systems such as developed by Hellens et al. (2005) in
tobacco. The other major limitation is the nature of multigene
effects in postharvest responses such as those to low tempera-
ture or low oxygen. The sensing mechanisms for these conditions
are still largely elusive and elucidation of the critical gene control
mechanisms is difficult. The most advanced systems approach to
postharvest issues may  well come from peach, where trancriptomic
(e.g., Lazzari et al., 2008; Tittarelli et al., 2009; Vizoso et al., 2009),
and proteomic (e.g., Lara et al., 2009; Nilo et al., 2010; Zhang et al.,
2010) data are being accumulated. The biggest limitation may  be
in our current ability to combine and model the information. Ulti-
mately next generation sequencing technology will not only lead
to genomic sequencing of non-odel species, it will also allow the
sequencing of multiple genomes, allowing comparisons of diverse
individuals in germplasm collections. This is already been achieved
in the model plant Arabidopsis, where there is current sequence
availability for multiple ecotypes, with the current plan to sequence
1000 individuals to identify genetic diversity. This is yet to have an
impact on plant gene regulation studies, let alone the postharvest
world.

3.2. Proteomics

Proteomics is the study of the whole set of proteins encoded by a
genome. The goal of proteomics is to understand at a given time and
under specific conditions, how proteins change in terms of expres-
sion, structure and function; proteins being the key to metabolic
processes. Proteomics as a platform, provides information on reg-
ulation of metabolism, and besides delivering biological markers,
also delivers targets of intervention (Kussmann et al., 2006).

3.2.1. State of the art
A typical proteomics work flow consists of protein extraction,
protein or peptide separation and quantification, protein identi-
fication and data analysis and integration. Protein extraction and
precipitation from plant materials can be challenging due to the
existence of interfering compounds such as phenolics, pigments
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nd oxidative enzymes. Specific methods such as phenol extraction
recipitation in methanol ammonium acetate have been success-
ully used with fruit material (Carpentier et al., 2005; Pedreschi
t al., 2007).

To separate proteins or peptides, two main approaches exist:
el-based and gel-free differing in the way proteins are isolated,
eparated and detected. Both approaches are thus complementary
nd focus on a subset of proteins. In a gel-based approach, proteins
re first separated by means of two dimensional electrophoresis
2-DE) based on isoelectric point and molecular weight properties
f proteins. Protein spots can be visualised by silver or Coomassie
rilliant Blue staining. A 2-DE involves labelling the proteins before
eparation is carried out. This sophisticated technology is known
s differential gel electrophoresis (DIGE) and up to three samples
an be resolved on a single gel, thus reducing technical variability
hile increasing confidence in terms of detection and quantifica-

ion (Unlu et al., 1997). After separation, proteins are independently
igested for further mass spectrometry identification.

In a gel-free approach, protein digests are analysed by means
f LC–MS/MS and quantification can be carried out by labelling the
eptides with stable isotopes (Gygi et al., 1999; Roe and Griffin,
006; Ross et al., 2004). Both with gel-based or gel-free approaches,
roteins need to be digested before being introduced into a mass
pectrometer. In most cases trypsin is used to cleave proteins on
he carboxy-terminal side of arginine and lysine residues (Steen
nd Mann, 2004).

A mass spectrometer uses an ion source to produce ions from
he sample. For the analysis of proteins, two soft ionization tech-
iques, matrix assisted laser desorption ionization (MALDI) and
lectrospray ionization (ESI) are used (Fenn et al., 1989; Karas and
illenkamp, 1988). One or more analysers are needed to separate

he ions based on their m/z  ratios, a detector to register the number
f ions coming from the last analyser and a computer to process
he data and produce the mass spectra (Lane, 2005). Either peptide

ass fingerprinting (PMF) typically performed by MALDI–TOF–MS
r tandem mass spectrometry (MS/MS) coupled to LC are used for
rotein identification (Mathesius et al., 2002). For data analysis,
ither univariate or multivariate statistical approaches can be uti-
ized but the focus and information extracted from such analysis

ay  turn out to be different (Karp et al., 2005; Pedreschi et al.,
008, 2007).

.2.2. Current use in postharvest
While there is a literature on conventional 2-D gel protein sep-

ration and putative identification in postharvest systems going
ack over several years, a true proteomic approach to fruit ripen-

ng has only appeared more recently in fruit such as tomatoes
Faurobert et al., 2007) and grapes (Giribaldi et al., 2007; Lucker
t al., 2009; Zhang et al., 2008). Protein markers for detecting
ptimum harvest maturity (Abdi et al., 2002) and analysis of
enotypic variation (Rocco et al., 2006) have resulted from such
tudies. Mechanisms involved in storage disorders such as core
reakdown in ‘Conference’ pears, creasing in citrus, and blossom-
nd rot in tomato (Casado-Vela et al., 2005; Lliso et al., 2007;
edreschi et al., 2008, 2007) have been studied using a gel-based
pproach. Proteomics tools have also been used to study physio-
ogical implications of disorders in tomato infected with mosaic
irus (Casado-Vela et al., 2006), peach fruit infected with mould
ot (Chan et al., 2007), and infected cherry fruit (Chan et al., 2008;
u and Tian, 2008).

.2.3. Limitations and opportunities

One of the limitations of the application of proteomics in

ostharvest science is the comparatively low number of horti-
ultural crops with their genomes completed. Thus cross species
dentification is carried out by comparing the peptides of proteins
y and Technology 62 (2011) 223–237

of interest with orthologous proteins from other well-characterised
species. In addition, for non-completed genomes, only a gel-
based approach is possible and this approach is certainly biased
to resolve certain types of proteins (e.g., highly abundant, acidic
and hydrophobic proteins are not resolved). With the increase in
cheaper, next generation sequencing (see above), this situation is
expected to change in the near future. There are target areas in
postharvest responses where a proteomics approach might pro-
vide levels of insight not yet reached through more conventional
approaches. These are particularly where responses or processes
are multigenic.

Temperature control has always been a challenge in postharvest
given that low temperature slows down ripening but if improperly
applied in a specific commodity can result in a range of storage dis-
orders. Temperature affects both membrane bound proteins and
cytosolic enzymes (Galindo et al., 2007). Membrane proteins are
one part of the proteome which are under studied and under
estimated due to difficulties in extraction and characterisation
(e.g., very hydrophobic, low abundant proteins). However, under-
standing the induction and behaviour of these proteins will be
of key importance in designing storage technologies which min-
imise occurrence of temperature related disorders. Another area
where there is an integrated gene and metabolic response is in
texture changes in crops associated with changes in the cell wall
(Vicente et al., 2007). Many cell wall polysaccharides and glycopro-
teins are synthesized in the Golgi apparatus and then trafficked to
the cell surface. If the mechanisms involved in the synthesis of cell
wall polysaccharides could be fully unravelled, then the selection
or manipulation of desired textural properties would be feasible
(Dunkley et al., 2006).

A number of other classes of proteins are becoming recognised
as important in postharvest quality of produce, and proteomic
approaches are likely to elucidate their roles more fully. For
instance, a range of consumer attributes such as nutritional and
health-related compounds are increasingly important in minimally
processed horticultural crops, and we have limited information
regarding the changes induced at a biochemical level. This includes
induction of allergenic proteins which can easily be assessed by
2-DE and IgE immunoblotting. In addition, proteomic analysis
is showing that classes such as pathogen-related (PR) proteins
are frequently being identified in commodities under postharvest
conditions, raising questions on their role in terms of fruit and
vegetable quality and environmental response (Pedreschi et al.,
2007; Sancho et al., 2006). The introduction of unintended effects
resulting from biotechnology or processing in a crop can also be
assessed using high throughput proteomic technology. In general,
proteomics driven research is expected to offer great opportunities
in the postharvest areas of process optimization and monitor-
ing, quality and traceability, safety and nutritional assessment
potentially contributing to innovations in the wider food industry
(Pedreschi et al., 2010). However, currently the linkage to genomic
and metabolomic information is poor to non-existent.

3.3. Metabolomics

Metabolic analysis has been an integral part of plant science
and postharvest science for over a century. Metabolic profiling
comprises a group of diverse techniques for evaluating one or
more metabolites. “Metabolite profiling” typically refers to tar-
geted analyses of specific metabolites or group of metabolites
while “metabolomics” designates non-targeted and, optimally,
non-biased, systemic analysis of the “metabolome” (Goodacre et al.,

2004). Current comprehensive or global metabolic profiling proto-
cols only evaluate a fraction of an estimated 15,000 metabolites
of considerable variability in concentration, size, solubility, and
stability within a single species (Allwood et al., 2008; Dixon,
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001). Instead, metabolic profiling or fingerprinting protocols are
ptimally non-targeted evaluations of metabolites from multiple
athways (Fernie, 2007; Goodacre et al., 2004); in effect, a repre-
entative sample of the metabolome. Plant scientists have adapted
lobal profiling extraction and analysis techniques for evaluation
f complex plant tissue matrices containing not only primary
etabolites, but diverse classes of secondary metabolites of con-

iderable importance to plant function as well as horticultural and
ostharvest value. The physical, temporal, and spatial resolution
hallenges presented by plant tissue require unique strategies for
etabolomic estimation.

.3.1. State of the art
Evolving instrumental and data analysis technology has

resented new opportunities for increasingly more inclusive
etabolomic estimation (reviewed by Allwood et al., 2008; Dunn

t al., 2005; Fernie et al., 2004; Hagel and Facchini, 2008). The
ost prominent modern platforms include gas chromatography

GC), liquid chromatography (LC), or capillary electrophoresis
CE) coupled with mass spectrometry (MS), standalone MS,
uclear magnetic resonance (NMR) spectroscopy, and Fourier-
ransformation-infra-red spectroscopy. Recently, laser assisted

icro-dissection (LAM, Moco et al., 2009) or various mass spectro-
etric techniques using laser desorption ionization (LDI, Sluszny

t al., 2005) or colloidal graphite or infra-red matrix-assisted laser
esorption ionization (GALDI, IR MALDI, Burrell et al., 2007; Cha
t al., 2008; Li et al., 2008), and time of flight secondary ion mass
pectrometry (TOF-SIMS, Metzner et al., 2008; Perkins et al., 2008)
ave been employed. Analytical platforms differ in metabolite
electivity, resolution, analysis speed, and potential throughput.
ikewise, each extraction method imparts a certain degree of selec-
ivity which may  bias metabolomic estimation.

The improved analysis speed and coverage afforded using non-
hromatographic techniques is typically at the cost of sensitivity
nd resolution (Goodacre et al., 2004; Hagel and Facchini, 2008).
dditionally, GC–MS and LC–MS provide an extra degree of res-
lution over chromatographic systems. A number of software
pplications are available to uncover individual metabolites from
hese complex data matrices (Broeckling et al., 2006; Halket et al.,
005; Lommen, 2009; Smith et al., 2006; Tautenhahn et al., 2008;
ia et al., 2009). Metabolites are typically identified using spec-

ral comparison with authentic standards or by using spectral
ibraries and metabolite databases (reviewed by Halket et al.,
005; Tohge and Fernie, 2009). Many features used for identifi-
ation can be platform, technique, or even protocol specific and
nly libraries for a few platforms are useful for instrument-wide
r universal comparison. Large metabolite libraries are available
or the GC–MS, which typically employs a highly predictable
lectron ionization source, making it a particular popular plat-
orm for metabolite analysis and identification (Lisec et al., 2006).
lso, GC retention standardization can be employed alongside
ass spectral identification, for improved comparability (Kopka

t al., 2005; Schauer et al., 2005a).
One of the most prominent plant tissue metabolomic anal-

sis protocols employs GC–MS to analyse trimethylsilyl(oxime)
erivatised aqueous extracts (Fiehn et al., 2000; Lisec et al., 2006;
oessner et al., 2000). This protocol has been optimized for a range
f tissues including potato tubers (Dobson et al., 2008; Roessner
t al., 2000; Roessner-Tunali et al., 2004), tomato fruit (Carrari
t al., 2006; Schauer et al., 2005a),  pear cortex (Pedreschi et al.,
009), and apple peel (Rudell et al., 2008; Rudell and Mattheis,
009). While evaluating a broad range of primary metabolites, this

rotocol detects few secondary metabolites, many of which are
ssential to agricultural commodity quality as well as function.
imilarly, protocols employed to measure secondary metabo-
ites are targeted or focused, neglecting many primary and other
 and Technology 62 (2011) 223–237 229

polar, non-volatile metabolites or physically diverse secondary
metabolites (Hagel and Facchini, 2008). To compensate, multiple
extraction and instrumental techniques can be employed to expand
metabolomic estimation (Moco et al., 2007, 2008; Rudell et al.,
2009).

3.3.2. Current use in postharvest
Storage, treatment, and distribution of perishable commodities

all present a profusion of external stimuli having both posi-
tive and negative consequences on storability and quality. These
can be examined using metabolomic evaluation techniques, yet
to date, research employing untargeted metabolic profiling to
study postharvest issues is relatively uncommon. Metabolomic
protocols have been used to link changes in apple fruit quality-
related metabolism and peel necrosis with varying pre-storage
light environment (Rudell et al., 2008; Rudell and Mattheis, 2009).
Metabolomic differences between pear cortex, with or without
browning injury, have been evaluated (Pedreschi et al., 2009) as
have links between apple peel necrosis (superficial scald), cold stor-
age duration, oxidative stress, and ethylene insensitivity (Rudell
et al., 2009).

3.3.3. Limitations and opportunities
Potential products of postharvest research using metabolomics

are biomarkers indicative of important quality and supply chain
factors such as ontogeny, surety of supply-chain quality, product
safety, or pathogen infection. Already untargeted studies of volatile
metabolites within storage head space have yielded prospec-
tive biomarkers indicating pathogen infection in a number of
stored commodities (Lui et al., 2005; Vikram et al., 2005, 2006,
2004a,b).

Combining metabolomics with genetic approaches is a particu-
lar promising application for determining heredity of biochemical
traits and linking traits to specific genes (Fernie and Schauer, 2009;
Goodacre et al., 2007; Keurentjes, 2009). Untargeted metabolic fin-
gerprinting techniques can be used to distinguish individuals with
unique quality characteristics within breeding and wild popula-
tions (Dobson et al., 2008; Schauer et al., 2005b; Stewart et al.,
2007). While targeted metabolite analysis of mapping popula-
tions is useful for limited discovery of quality-related metabolic
quantitative trait loci (QTL), untargeted biochemical phenotyping
of genetically mapped populations can reveal multiple metabolic
QTLs that comprise sensory traits (Dunemann et al., 2009; Zanor
et al., 2009; Zini et al., 2005). This approach has been espe-
cially productive where genetic techniques, such as introgression,
have been incorporated, effectively establishing metabolic trait
heritability while unravelling metabolic control by genomic com-
parison instead of metabolic co-fluctuation with gene expression
(Baxter et al., 2005; Keurentjes et al., 2006; Schauer et al., 2008,
2006).

Metabolomics is a product of advances in instrumentation and
methodology which are not unfamiliar to postharvest science. New
opportunities for improving perishable commodities’ quality and
nutritional value using breeding, for understanding storage related
metabolism and its genetic control, for developing biomarkers to
monitor storage physiology, and for improved food safety and
quality assurance exist as a result of these new techniques. Most
importantly, measurement of the metabolome has proven to have
a crucial and complimentary role alongside the genome, proteome,
and transcriptome in systems biology. All of these current and
developing technologies will mean a stage will be reached rapidly

where the ability to accumulate data is greater than the capacity to
analyse them. This creates challenges for computational biology in
general and the application and development of proper modelling
tools in particular.
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. Modelling

A model is a simplified representation of real world objects
r systems based on formalised assumptions of its structure,
ehaviour and interconnectivity; in other words, a model is a
ondensed tangible format of existing information (Ross, 1999).
he level of model complexity required strongly depends on the
ntended purpose of the model. As models are by definition sim-
lifications, they will never be “true” as the only true model is the
ystem itself (Oreskes et al., 1994). Therefore, the aim of modelling
s not to develop true models but to develop valid models; mod-
ls that are consistent with the current knowledge level and that
ontain no known or detectable flaws of logic. Probably the main
urpose of the modelling process is to force the researcher to line
p his or her concepts to bring order to the chaos (Hertog et al.,
007).

The modelling process (Fig. 2) is an iterative process. The reason
or these iterations is the learning aspect of stepwise increasing
nowledge by experimentation, modifying the existing concepts,
eading to subsequent model adaptations (Kreutz and Timmer,
009). Essentially the same iterative procedure was observed in the
ystems biology work flow (Fig. 1). When there is uncertainty about
he most likely model structure, simulated model behaviour can
e compared to actual experimental data to discriminate between
he different options (Cedersund and Roll, 2009). Once the most
ppropriate model is selected there might still be some unknown
odel parameters that need to be estimated from the experimen-

al data. The identifiability analysis will help in designing targeted
xperiments that generate data containing enough information to
stimate all unknown model parameters if possible. With increas-
ng model complexity and many correlated parameters, a unique
olution might no longer be available resulting in a non-identifiable
odel. As a result, individual parameter estimates will be unreli-

ble although the overall model might still fit the experimental
ata.

.1. Model approaches

The most rudimentary model is the conceptual model lurking
n the back of the mind of an individual researcher, which can be
chematically sketched on the back of a beer coaster to convey the
oncepts to eagerly listening students. As the complexity of biologi-
al systems surpasses the computational power of the human brain
o process and organise the increasing amount of data, the largely
ualitative conceptual model can be turned into more powerful
uantitative mathematical models.

A wide range of such mathematical models has found an appli-
ation in systems biology. The different approaches can roughly
e separated into two groups of modelling techniques, induc-
ive (Hills, 2001) and deductive (Verdenius, 2001). With inductive

odelling techniques the model is induced by the data and no
xplicit expert knowledge is required. These techniques are com-
letely data driven and might result in relationships with a limited
alidity. Examples of these techniques are multivariate statisti-
al techniques such as MANOVA (Hwang and Park, 2009), PLS-DA
Perez-Enciso and Tenenhaus, 2003) and data mining techniques
uch as neural (Almeida, 2002) or Bayesian networks (Wilkinson,
007). Deductive modelling techniques are based on explicit expert
nowledge and are constructed using fundamental laws and gener-
lly valid relationships. Examples of these techniques are models on
eat and mass transfer (Nicola et al., 2001), reaction diffusion mod-
ls (Ho et al., 2008, 2006), biochemical kinetic models (Demin and

oryanin, 2008) and models of population dynamics (Ferrer et al.,
008). In systems biology, both types of models are encountered.

A major step in model development is the choice of the organisa-
ional level at which the model should be developed (e.g., cellular,
y and Technology 62 (2011) 223–237

tissue, organ, organism) and which parts and processes (e.g., genes,
metabolic pathways, or processes like gene splicing and cell divi-
sion) should be included and which should be left out (Mogilner
et al., 2006). What is essential and what is redundant largely
depends on the intended application of the model; what should
it be able to predict? Going through this modelling process, one
is forced to consider functional and causal relationships. Within
systems biology the tendency is to include as much data as possi-
ble and leave it to inductive techniques to determine which of the
variables considered might be important. In a later stage, research
focuses on identification and confirmation of pathways and con-
trol mechanisms starting from the inferred networks, evolving
towards mechanism based models providing insight in the under-
lying interactions, molecular or otherwise (Belostotsky and Rose,
2005). However, the model complexity (e.g., number of variables
and parameters, structural complexity in terms of compartmentali-
sation) has to be in line with the amount and type of data measured;
for instance, it will be difficult to build a model on the genetic
regulation of fruit ripening on metabolic data only.

4.2. Network based models

In a first instance, one would like to interpret the experimental
data coming from any of the mentioned omics approaches in the
light of known metabolic pathways as documented in for instance
the KEGG Pathway Database (Kanehisa and Goto, 2000). These
pathways serve as conceptual models that act as a reference frame-
work when interpreting new experimental data. Over the years
tools have been developed, such as MapMan, to visualise large scale
omics data by projecting it on known pathways, thus making the
numerical data accessible in a more user friendly format (Osuna
et al., 2007; Usadel et al., 2009). While this approach is helpful in
visualising data for established pathways, it is not generating quan-
titative data on regulation and control of the pathway nor will it
actively help in identifying new pathways.

A wide range of approaches exists to model genetic regulatory
systems ranging from probabilistic via Boolean, rule based and log-
ical techniques to quantitative differential equations, either or not
spatially distributed (De Jong, 2002; Hecker et al., 2009). Each of
these techniques have their own constraints in how they describe
the network by being either static or dynamic, discrete or contin-
uous, deterministic or stochastic, qualitative or quantitative and
by their different level of detail. Using these techniques, models
can be either composed from knowledge on regulatory interactions
(structural information) or induced from expression data (func-
tional information) with both techniques being complementary.

With evolving computational power and growing databases,
approximate qualitative models are being replaced with more
detailed quantitative models (Wolkenhauer et al., 2005). Addi-
tionally, large efforts in the area of bioinformatics go towards
techniques for effectively mining and combining pathway infor-
mation from the various omic databases to support construction of
large scale computational models of cellular processes (Cary et al.,
2005; Price and Shmulevich, 2007; Yuan et al., 2008). The gen-
erated network models graphically represent metabolic pathways
showing nodes, representing genes, RNAs, proteins or metabolites
and their interrelationships represented by the arrows or lines con-
necting the nodes. Examples of gene regulatory networks that have
been modelled for higher plants include flower development, cir-
cadian clocks and auxin fluxes during plant development (Long
et al., 2008). Such network models can be used, starting from the
known pathways, to generate coherent hypotheses which can be

subsequently verified using experimental data (Rho et al., 2008).
In addition, database information can be used to reconstruct net-
works for systems that have not been studied yet (Libourel and
Shachar-Hill, 2008).



M.L.A.T.M. Hertog et al. / Postharvest Biology and Technology 62 (2011) 223–237 231

apted

c
f
c
m
c
b
c
c
l
t
s
a
t
t
t
o
s
b
a

4

c

Fig. 2. Schematic outline of the model building process (ad

To discover new pathways various types of correlation analysis
an be applied, for instance, to infer metabolic networks directly
rom experimental omics data (Goodacre et al., 2004). By using
orrelation network plots, the clusters of, for instance, correlated
etabolites can be identified, and changes in correlation strengths

an be interpreted in the light of functional and regulatory relations
etween the metabolites (Ursem et al., 2008). Such network models
an be derived using unsupervised techniques, such as hierarchical
lustering and principal component analysis, that search for simi-
ar correlation patterns in the omics data. Alternatively supervised
echniques can be used, such as discriminant analysis, partial least
quares regression and artificial neural networks, that addition-
lly search for associations of the omics data with certain response
raits. Although the correlation structure is a direct fingerprint of
he biological system it is not that straightforward to reconstruct
he actual reaction mechanism based on the correlation structure
nly (Steuer et al., 2003). Established metabolic pathways or recon-
tructed in silico network models can subsequently be used as a
ase for developing kinetic models and performing metabolic flux
nalyses using the stoichiometry of the network models.
.3. Kinetic based models

Kinetic models provide a very detailed framework to describe
ellular processes in terms of chemical reactions. In this concept the
 from Kreutz and Timmer, 2009). For explanation see text.

status of the system is defined by the concentrations of the consti-
tuting compounds. These can either interact with other compounds
being converted to new ones, or interact with other compounds
regulating or influencing their turnover (e.g., in the case of enzymes,
cofactors or competing compounds). They can be transported to
other cellular compartments where they might be stored, act as a
signalling molecule to trigger other processes, or become activated
to perform some other task.

In the area of metabolic engineering, emphasis is on stoi-
chiometric models of metabolic pathways which are founded
in the reaction biochemistry assuming dynamic steady states
(Stephanopoulos et al., 1998). A number of the tools developed
for metabolic engineering, such as metabolic control analysis and
metabolic flux analysis (Stephanopoulos et al., 1998) are there-
fore dedicated to analyse stationary states although some of these
can also be applied to oscillatory systems as long as average
fluxes are considered (Schuster et al., 2002). However, biolog-
ical oscillations cannot be fully understood using only steady
state assumptions as they operate through dynamic interactions
between multiple biological processes. Two other techniques to
study metabolic network models are extreme pathways anal-

ysis and elementary mode analysis (Libourel and Shachar-Hill,
2008). Both techniques aim to identify small sub-networks in order
to study the regulatory mechanisms of a metabolic network in
more detail (Price et al., 2003), to look for redundancy, and to
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valuate the likelihood of particular metabolic routes (Schuster
t al., 2000).

Most of the techniques mentioned above were developed to
tudy microbial systems under physiological steady state by grow-
ng them in chemostat bioreactors. While some of these techniques
an be applied to plant cell cultures as well, intact plants and
heir tissues generally do not maintain metabolic steady state
ong enough. Kinetic modelling is the most generally accepted
pproach to quantitatively evaluate the dynamics of biological
ystems. Each of the involved metabolic processes and transport
teps can be described using differential equations linking the con-
entrations of the involved compounds to the actual turnover or
ransport rates via reaction rate constants. Depending on the under-
ying reaction mechanism (e.g., Michaelis–Menten, Ping–Pong, or
ernary-complex mechanisms) different rate equations can be
pplied describing the relation between turnover rate and con-
entrations of the involved compounds (Bisswanger, 2008). These
inetic models are strongly focussed towards deterministic pro-
esses while gene expression (transcription and translation) has
argely shown to be of a stochastic nature (McAdams and Arkin,
997). Kinetic models can also be used to describe the flux of isotope

abels through a metabolic network allowing the detailed study of
omplex networks containing branching and oscillating pathways
Roessner-Tunali et al., 2004; Roscher et al., 2000). In this way, the

olecular flux and turnover can be tracked even if total levels of
pecific metabolites remain unchanged. Network flux models that
re based on experimental data (Baxter et al., 2007) or theoretical
Steuer et al., 2003) information can be interpreted against known

etabolic pathway structures.

.4. Model reduction

Processes in biological systems occur at a range of scales, both
n terms of size, location, time and complexity. When focussing
n whole plant physiology, or as in the case of postharvest the
hysiology of harvested plant parts (fruits and vegetables), the
ystem behaviour of interest is the end result of a long chain of
vents starting at the level of molecular interactions determining
ellular behaviour which, taking into account differences between
he various cell types, affects tissue functioning and finally whole
lant physiology. As postharvest data are inevitably characterised
y large biological variation (Hertog et al., 2007), stochastic and
patio-temporal variation should ideally be incorporated at all
f these functional levels accounting for heterogeneity in chemi-
al and physical properties. Although the reaction-based view of
ystems biology is appealing in its emphasis on mechanism and
ynamics, it is ill-suited to describe whole plant physiology as
any reactions are still unknown leading to un-identifiable mod-

ls (Sorger, 2005). However, by proper lumping, model complexity
an be reduced, still conserving the original model performance as
ell as possible, providing insights into the key species determining

he kinetics of the underlying kinetics (Dokoumetzidis and Aarons,
009).

Additionally, by using multi-scale models it becomes possible
o combine detailed reaction-based and large-scale systems-
heoretical views of a complex process. Multi-scale models allow
ntegration of information from different spatio-temporal scales

hile capturing both continuous deterministic processes and dis-
rete stochastic processes (Sorger, 2005). An early multi-scale
pproach in systems biology by Chen et al. (2004b) modelled
he cell growth and division cycle of budding yeast based on a

inetic mechanism that is almost fully specified at the genetic level
ombining continuous and discrete events successfully describing
henotypes of 120 existing mutants and predicting phenotypes of
ew mutant combinations.
y and Technology 62 (2011) 223–237

4.5. Modelling tools

Many initiatives around the world have developed math-
ematical and statistical approaches in combination with the
dedicated software tools to bring the expertise of modelling
within reach of the experimental researcher. Over the last decade
efforts have been put towards bringing all these initiatives
together through the development of a common exchange lan-
guage which resulted in the Systems Biology Markup Language
(SBML), an open source computer-readable format for repre-
senting models of biological processes. SBML can be used to
formulate models on general metabolism, cell signalling, and
other processes, and has been widely adopted by over 180,
mostly free, software packages in the area of systems biology
(http://sbml.org/SBML Software Guide/SBML Software Matrix).
Thanks to SBML, models can easily be transferred between the
various software tools, shared between authors and reused for
various purposes. For instance, pathways from the KEGG database
can directly be imported into SBML minimising errors when
building complex network models. This has opened the door for
the development of detailed virtual cell (Moraru et al., 2008), plant
(Katari et al., 2010) and even human models (Kohl and Noble,
2009). By combining these largely biochemical and regulatory
models with realistic geometry models (Verboven et al., 2008) to
account for spatial differences and biophysical models to describe
heat and mass transfer (Ho et al., 2009, 2008) or other biophysical
processes such as mechanical deformation (Ghysels et al., 2009;
Loodts et al., 2006), even more complete models can be obtained
of biological subsystems like fruit organs which is the ultimate
goal for applications in postharvest systems biology.

5. Potential for postharvest

Why  should a postharvest systems approach be of value? If we
consider the principal responses and processes, we  are increasingly
aware that single pathways and responses do not provide an ade-
quate explanation of fruit and vegetable postharvest behaviour.
Ripening itself is an integrated process including among other
things, respiratory changes, cell wall changes, aroma volatile pro-
duction, skin colour changes, and control in varying ways by
ethylene and other growth regulators. When we add the com-
plications of variable postharvest temperatures and atmosphere
conditions, pathogen attack, and specific treatments such as as
those used for disinfestation, then we can recognise that we  are
dealing with a matrix or network of responses and processes co-
ordinated in different ways in different crop species. The potential
for postharvest can be summarised in four areas.

5.1. Regulation of processes and responses

There has been a huge effort over the years to identify and char-
acterise single events, metabolites or genes which might be part
of, or control, the physiological response of a fruit or vegetable.
In the end many of these are inadequate because: (1) they often
concentrate on only one member of a gene or enzyme family, or
metabolic pathway; (2) evidence of a role for genes, proteins, or
metabolites is usually only correlative; (3) they rarely take into
account the connectivity between genes, pathways or metabolites
and we  know little on how one gene or enzyme influences another
in postharvest responses. With the availability of new technologies,
there is a change from single gene or single metabolite approaches

to analysis of multiple metabolites, pathways, and gene and protein
families. At each step from gene through to metabolite and physio-
logical response we are now confronted with multiple data sets and
concepts, not single events or entities. Transcription factors are per-

http://sbml.org/SBML_Software_Guide/SBML_Software_Matrix


iology

h
r
i
s
t
c
s
b
w
e
p
l
i
A
l
t
2
a
p
b

5

i
a
a
a
t
n
i
u
a
o
b
p
m
t
a
s
h
s
2

5

r
d
a
b
g
w
w
w
h
f
t
o
t
r
t
i
l
b

M.L.A.T.M. Hertog et al. / Postharvest B

aps a notable exception. One example of the latter is the control of
ed pigmentation by members of the MYB  transcription factor fam-
ly, where for instance, red colour in many fruit is regulated by genes
uch as a MYB10 in apple fruit, and colour variants can be traced
o mutations in these genes (Allan et al., 2008). However, identifi-
ation of controlling elements for common postharvest responses
uch as chilling injury or response to low oxygen is a long way
ehind. This is because these are not single gene or single path-
ay responses, and a systems approach through knowledge of

xpression of genes associated with, for instance, antioxidants and
henolic metabolism, combined with metabolomics and physio-

ogical measurements (the physiome) is likely to be the only way
n which we can gain a useful understanding of these processes.

 start in this regard has been made with recent studies, particu-
arly with citrus, on global gene expression or proteomics in low
emperature (e.g., Yun et al., 2010) or anaerobic (e.g., Shi et al.,
008) conditions, and in modelling CA and browning in pears and
pples (Franck et al., 2007; Pedreschi et al., 2008). It is in these com-
lex responses that a systems approach will provide the greatest
enefit.

.2. Quality prediction

Modelling, and particularly systems modelling, does not only
ncrease our understanding of processes and their regulation, but
lso is inevitably directed to prediction of behaviour. This should
llow design of more effective postharvest systems and processes,
nd perhaps the low level of uptake to date reflects the limita-
ions of using confined datasets for model development. This is
ow changing, as can be seen for instance on modelling biolog-

cal variability (see Hertog et al., 2007, and references therein),
sing enzyme theory to model quality (e.g., Bobelyn et al., 2006),
nd in modelling specific quality properties such as firmness
f fresh-cut tomato (Schouten et al., 2010), or glucosinolates in
roccoli (Schouten et al., 2009). Extending these studies to incor-
orate a wider range of activity and data is now possible, and
ore accurate predictions of postharvest responses should even-

uate. Can we expect soon to be able to collect data at harvest,
dd postharvest storage conditions, and accurately predict con-
umer flavour perception 6 months later? Current research on
uman gene responses and variability might also allow us to
ay which consumers will perceive what aromas (Jaeger et al.,
010).

.3. Plant improvement

Although fruit quality properties important to postharvest
esponses, such as texture, taste, and susceptibility to storage disor-
ers, have been among the target traits used for some time in fruit
nd vegetable breeding, genetic markers for such traits have rarely
een successfully used. Genomic information, particularly whole
enome sequencing will change our approach to genetic markers,
ith a de-emphasis on QTLs and random sequences. Greater efforts
ill be made to identify specific genes for selection and biomarkers
hich may  involve proteins and metabolites. Genard et al. (2007)
ave pointed out the advantages a model might provide where QTLs

or model parameters may  be more beneficial than those just for
raits, presumably because the model has incorporated a wider set
f variables and may  take into account environmental effects on
rait development. A systems-based model will provide even more
igorous targets because of the broader and deeper sets of informa-

ion incorporated. Metabolic pathway models can also be used to
dentify bottlenecks in the biosynthesis of important plant metabo-
ites such as aroma volatiles. This information could guide future
reeding efforts.
 and Technology 62 (2011) 223–237 233

5.4. Virtual fruit

One goal that is rapidly becoming a reality is the concept of the
virtual fruit. In essence this is a systems model which incorporates
all critical properties of an organ such as a fruit to demonstrate
a co-ordinated response to external environment and the inter-
nal, genetically based processes of growth and development. A
peach fruit model has been developed based on dry and fresh
mass and sugar accumulation and largely concentrating on fruit
development (Lescourret and Genard, 2005), and is predominantly
physiological and mechanistic. There have been few attempts to
incorporate genetic control into fruit models, particularly with
regard to quality, and not in terms of postharvest responses. Where
this has been attempted, it has been largely at the level of QTLs
rather than at the specific gene level (see Genard et al., 2007,
and references therein). The information we now have available
means that a system approach incorporating genomic, proteomic
and metabolomic information with physiological and biophysi-
cal data and models, is becoming possible. Postharvest science is
notable for the very large archive of datasets available on fruit
physiology and postharvest responses in relation to quality in
model fruit such as tomato, apple and peach. One of the major
challenge in postharvest physiology will thus become the inter-
pretation of ‘omics’ studies in combination with phenotypic data,
and the transformation of large databases into useful information
and information into new biological knowledge. The human phys-
iome project (http://www.physiome.org.nz/; “a worldwide public
domain effort to provide a computational framework for under-
standing human and other eukaryotic physiology. It aims to develop
integrative models at all levels of biological organisation, from
genes to the whole organism via gene regulatory networks, pro-
tein pathways, integrative cell function, and tissue and whole organ
structure/function relation”) perhaps gives the postharvest world
a lead in what might be achieved in a new era.
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